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Opioid addiction is a chronic, relapsing disorder associated with
persistent changes in brain plasticity. Reconfiguration of neuronal
connectivity may explain heightened abuse liability in individuals
with a history of chronic drug exposure. To characterize network-
level changes in neuronal activity induced by chronic opiate expo-
sure, we compared FOS expression in mice that are morphine-
naïve, morphine-dependent, or have undergone 4 wk of withdrawal
from chronic morphine exposure, relative to saline-exposed controls.
Pairwise interregional correlations in FOS expression data were used
to construct network models that reveal a persistent reduction in
connectivity strength following opiate dependence. Further, we
demonstrate that basal gene expression patterns are predictive of
changes in FOS correlation networks in the morphine-dependent
state. Finally, we determine that regions of the hippocampus, stria-
tum, and midbrain are most influential in driving transitions be-
tween opiate-naïve and opiate-dependent brain states using a
control theoretic approach. This study provides a framework for
predicting the influence of specific therapeutic interventions on the
state of the opiate-dependent brain.

opioid dependence | network analysis | mice | graph theory | control
theory

Drug dependence and relapse liability are thought to be
supported by lasting alterations in neural circuitry. In light

of the ongoing opioid epidemic in the United States, there is
growing interest in connectivity-based approaches to understand
the influence of opioid use disorder (OUD) on the brain’s re-
sponsiveness to opiates and opiate-related cues (1). Such ap-
proaches hold promise for identifying biomarkers for OUD and
for predicting treatment response.
Human neuroimaging studies have provided valuable insight

into the neural correlates of OUD (1–4). However, such inves-
tigations are challenged by the marked individual variability in
polysubstance abuse and duration of use. In contrast, rodent
models offer a controlled environment in which to study the
mechanisms of chronic opiate effects on the brain. In the interest
of identifying brain regions that are critically involved in drug
reward, dependence, and withdrawal, expression of the imme-
diate early gene c-Fos has been widely used in preclinical rodent
models as a marker for neuronal activity. Induction of c-Fos
occurs following both acute and chronic exposure to drugs of
abuse and during withdrawal, and its expression is correlated
with drug-induced behavioral changes including locomotor sen-
sitization, conditioned place preference (CPP), and conditioned
place aversion (5–7).
Four weeks of abstinence from chronic morphine exposure

prior to conditioning has been shown to increase morphine CPP
in rats, suggesting that rewarding properties of the drug are
enhanced following protracted withdrawal (8). This enhanced
preference is also associated with increased FOS expression in

the cingulate cortex, nucleus accumbens (NAc), bed nucleus of
the stria terminalis (BNST), and central and basolateral amyg-
dala (CeA and BLA) (8). Induction of FOS protein expression in
the NAc core and shell, dorsal striatum, ventral pallidum, lateral
hypothalamus, and cortical regions following acute morphine has
also been shown in rodent models (9), with the NAc and striatum
displaying the most consistent activation across studies.
Analysis of FOS expression in rodent models has been critical

for identifying individual brain regions associated with opioid
exposure. However, OUD is a complex disease that will require a
holistic rather than reductionist approach to fully appreciate its
biological underpinnings. Studying the activity of individual re-
gions in isolation ignores higher-order relationships between
regions that form networks, in which individual brain regions
may be represented as nodes, and their functional associations
may be represented as edges (10, 11). Dynamics on these net-
works can be studied mathematically using tools from network
control theory (12).
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The basic premise to be investigated in the current study is
that chronic exposure to opioids causes changes in FOS corre-
lation networks, which we define as interregional correlations in
neuronal activation across subjects. We hypothesize that these
changes occur in key areas of the brain that may predispose an
individual to increased drug-seeking behavior. To this end, we
apply a combination of computational approaches (graph theory
and network control theory) to 1) define characteristics of FOS
correlation networks associated with opioid dependence, 2)
characterize gene expression patterns associated with changes in
FOS correlation network connectivity induced by opioid de-
pendence, and 3) identify brain regions that are most influential
in the transition from an opiate-naïve to an opiate-dependent
brain state (overview of design in Fig. 1). The analysis of com-
plex networks with respect to OUD could shed light on the
causes and mechanisms of the disease and provide compelling
targets for therapeutic interventions.

Results
Acute Morphine Increases FOS Expression in a State-Dependent
Manner. To test the hypothesis that dependence alters neuronal
activity in response to morphine, we administered an acute, re-
warding dose of morphine (10 mg/kg) to mice in three states:
drug-naïve, 24 h after chronic exposure (at which time depen-
dence has been established, as evidenced by increased somatic
signs of withdrawal shown in SI Appendix, Fig. S1), and 4 wk after
chronic exposure. FOS expression was quantified in each of
these three treatment groups and in a saline-injected control
group within 19 brain regions of interest. All FOS expression
values were normalized to the mean FOS expression in saline-
injected controls to compute fold change (13). Analysis of fold
change in FOS expression by two-way ANOVA revealed signif-
icant main effects of brain region (F18,570 = 19.52, P < 0.0001)
and treatment (F3,570 = 104.0, P < 0.0001) and a significant re-
gion × treatment interaction (F54,570 = 4.493, P < 0.0001)
(Fig. 2).
We performed Bonferroni post hoc tests over all 19 families of

six pairwise comparisons for each brain region and set the sta-
tistical threshold for a significant difference in FOS expression
between any two treatment groups to P < 0.05. We observed
state-dependent increases relative to saline controls within 12
brain regions: the dorsal anterior cingulate cortex (dACC),
ventral anterior cingulate cortex (vACC), dorsal agranular insula
(AId), claustrum (Cla), caudate putamen (CPu), NAc, BNST,
BLA, CeA, lateral habenula (LHb), compact region of the sub-
stantia nigra (SNc), and ventral tegmental area (VTA). Mice in
all morphine-treated groups showed elevated FOS expression in
the dACC, Cla, CPu, NAc, BNST, and BLA relative to saline-
treated controls. In the BLA, FOS expression was also signifi-
cantly elevated at 24 h compared to in the naïve state. In the
CPu, FOS expression was also significantly greater after 4 wk

compared to in the naïve state. In the dACC, FOS expression
was significantly greater in the naïve condition compared to 24 h,
and in both the dACC and VTA, FOS expression was signifi-
cantly elevated 4 wk after chronic exposure relative to all other
conditions. FOS expression increased only in mice with prior
chronic exposure in the AId (at 24 h), in the LHb and SNc (at 4
wk), and in the CeA (at 24 h and 4 wk). In the vACC, FOS
expression increased only in the naïve and 4-wk groups, and the
4-wk group showed significantly higher expression than the 24-h
group. FOS expression was not significantly elevated in the
ventral agranular insula (AIv), ventral pallidum (VP), dentate
gyrus (DG), medial habenula (MHb), paraventricular nucleus of
the thalamus (PVT), periaqueductal gray (PAG), or reticular
region of the substantia nigra (SNr) in any treatment group.
Thus, neuronal activity in response to an acute dose of morphine
is significantly different depending on brain state.

Chronic Opiate Exposure Alters Network Connectivity. After identi-
fying region-specific effects of morphine dependence on FOS
expression, we next sought to characterize network-level changes
in interregional FOS correlation networks across brain regions.
We generated FOS correlation networks based on pairwise in-
terregional correlations in FOS expression across mice. Inter-
regional Pearson’s correlation coefficients were calculated based
on fold change in FOS expression (relative to saline) in 19 brain
regions (Fig. 3A). Each brain region is represented as a node in
the network, and correlations in FOS expression are represented
as edges which are weighted according to the strength of
the correlation (Fig. 3C). A one-way ANOVA of Fisher’s
z-transformed positive Pearson’s r values revealed a significant
reduction in mean correlation strength 24 h after chronic expo-
sure compared to in the drug-naïve state, and this reduction is
maintained 4 wk after chronic exposure (Fig. 3B). These data
indicate that opioid dependence induces a reduction in func-
tional coupling between brain regions that persists across time, as
reflected by the striking difference in connectivity between states
(Fig. 3C). We observed the same results when using Spear-
man correlations instead of Pearson correlations (SI Appendix,
Fig. S2).
A common objective of graph theory approaches to network

analysis is to identify nodes that are relatively “central” within
the network, which may suggest an important role in information
flow between other nodes (14, 15). Here, we used two centrality
measures to assess local connectivity within the global context of
our networks: weighted degree and weighted betweenness cen-
trality. Weighted degree refers to the sum of edges connected to
a given node, weighted by their strength (16). Nodes with high
degree are often referred to as network hubs and may strongly
influence the network’s function (14, 15). Betweenness centrality
refers to the number of shortest paths between other nodes that
a given node intersects (14). In the context of this work,

Fig. 1. Experimental schematic. (A) Three groups of mice were administered 10 mg/kg morphine in three states: drug-naïve, 24 h after chronic morphine, and
4 wk after chronic morphine. The chronic morphine exposure paradigm consisted of 5 d of repeated s.c. injections of escalating doses of morphine. Doses
shown are in milligrams per kilogram. Control animals were given injections of saline instead of morphine. (B) Tissue was collected 90 min after the last
injection, 30-μm sections were cut on a cryostat, and populations of neurons were quantified within 19 brain regions of interest. (C) Interregional correlation
matrices were generated from FOS quantification data. (D) FOS correlation networks were used to formally represent interregional correlation matrices.
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betweenness centrality reflects the extent to which one brain
region acts as an intermediary between other brain regions.
Analysis by two-sample Kolmogorov–Smirnov test revealed

that relative to the naïve state, networks significantly differed in
distributions of weighted degree at 24 h (D36 = 0.6316, P =

0.0021) and 4 wk (D36 = 0.5263, P = 0.028) after chronic mor-
phine exposure (Fig. 3D). There was no change in weighted
degree distribution between 24 h and 4 wk (D36 = 0.3158, P =
0.92). To examine region-specific changes in weighted degree
across conditions, we performed a two-way ANOVA and

Fig. 2. Acute morphine increases FOS expression in a state-dependent manner. Fold change in FOS expression relative to saline group in 19 brain regions.
Male C57BL/6 mice (n = 8 or 9 per group) were administered an injection of 10 mg/kg morphine after no prior drug exposure (naïve), 24 h after chronic
exposure (24 h), or 4 wk after chronic exposure (4 wk), and tissue was collected 90 min later. The influence of treatment on fold change in FOS expression
across brain regions was analyzed by two-way ANOVA. Bonferroni-corrected *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars represent SEM.

19558 | www.pnas.org/cgi/doi/10.1073/pnas.2003601117 Brynildsen et al.
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identified significant main effects of region (F5,39 = 7.743, P <
0.0001) and treatment (F2,39 = 23.95, P < 0.0001) and a signifi-
cant region × treatment interaction (F10,39 = 4.161, P = 0.0006).
In regions of the midbrain, weighted degree was significantly
reduced at 24 h after chronic exposure compared to in the naïve
and protracted withdrawal states (Bonferroni-corrected P <
0.0001). Nonsignificant reductions in weighted degree were ob-
served across all other region groups in the 24-h and 4-wk states

relative to the naïve state (SI Appendix, Fig. S3A). Distributions
of weighted betweenness centrality did not differ across states
(D36 ≤ 0.3158, P ≥ 0.90) (Fig. 3E), and region-specific analysis by
two-way ANOVA revealed a significant main effect of region
(F5,39 = 2.523, P = 0.0451) but no effect of treatment (F2,39 =
0.6490, P = 0.5281) and no region × treatment interaction
(F10,39 = 1.144, P = 0.3562) (SI Appendix, Fig. S3B). Taken to-
gether, these findings suggest that opioid dependence alters the

Fig. 3. Opioid dependence alters local features of FOS correlation network connectivity. (A) Interregional correlation matrices reflecting pairwise correla-
tions in FOS expression between 19 brain regions of interest. (B) Distribution of Fisher’s z-transformed positive Pearson’s r values across states. (C) Graph
representations of FOS correlation networks reflecting the correlation matrices. Nodes represent brain regions, and edges represent positive pairwise cor-
relations in FOS expression, weighted according to the strength of the correlation. Nodes are colored to reflect their anatomical class. (D) Weighted degree in
each state. (E) Illustration of degree. Each of the gray nodes has a degree of 1, while the white node has a degree of 2. (F) Weighted betweenness centrality in
each state. (G) Illustration of betweenness centrality. The red node falls on the shortest paths (highlighted) between each of the gray nodes and the white
node. Distributions of weighted degree and betweenness centrality were compared via two-sided Kolmogorov–Smirnov test. Bonferroni-corrected *P < 0.05,
**P < 0.01, ***P < 0.001.
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functional architecture of the brain by modulating the strength of
connections between pairs of regions, particularly within the
midbrain, but not by altering the tendency for brain regions to
mediate connections between other regions.

Basal Gene Expression Patterns Predict Change in FOS Correlation
Networks following Opioid Dependence. We next sought to iden-
tify a transcriptional basis for opiate-induced changes in FOS
correlation networks. We used transcriptomic data recently re-
leased by the Allen Institute, which allows for the spatial reso-
lution of gene expression across brain regions. This dataset was
used to examine correlated gene expression patterns across
19,616 genes within our 19 brain regions of interest. We defined
gene coexpression as spatially-corrected pairwise correlations in
expression across all genes between every pair of brain regions.
We then performed a linear regression of mean gene coex-
pression per brain region with change in weighted degree from
the drug-naïve to the 24-h state. We hypothesized that basal gene
expression may play a role in how certain brain regions are
functionally connected. Of interest, we identified a significant,
positive linear relationship between basal gene coexpression and
changes in FOS correlation networks that result following
chronic opioid exposure (Fig. 4A). Specifically, we observed
stronger gene coexpression among pairs of brain regions that
show increased connection strength after opioid exposure,
compared to those that show decreased connection strength.
Thus, basal gene coexpression patterns are predictive of changes
in FOS correlation networks following chronic opioid exposure.
To identify specific genes that contribute significantly to the

higher coexpression among pairs of regions that show increased
connection strength compared with those that show decreased
connection strength (Fig. 4B) we calculated a gene coexpression
contribution (GCC) score for each gene (17), which yields a
t-statistic score and P value for each gene. After applying a false
discovery rate correction (q < 0.05) for multiple comparisons
across the 19,616 tests, we identified 2,775 genes that signifi-
cantly contribute to higher gene coexpression among brain re-
gion pairs that show increased connectivity compared to brain
region pairs that show decreased connectivity following opioid
dependence. In order to appreciate the biological significance of
these genes, we used Ingenuity Pathway Analysis software to
functionally annotate genes that contribute to stronger tran-
scriptional coupling between regions that show increased con-
nectivity following opioid dependence. Among the most
significantly associated pathways were Synaptic Long Term Po-
tentiation, Synaptogenesis Signaling Pathway, Integrin Signaling,
and Reelin Signaling in Neurons (Table 1). These findings are in

line with the notion that drugs of abuse alter synaptic transmis-
sion, which is reflected by changes in FOS correlation networks.

Network Control.Drug dependence is understood to coincide with
a change in the state of the brain. A major challenge in the
treatment of substance use disorders is determining how to re-
store the brain to its former state (18). Reaching this goal will
require an understanding not only of how neural circuitry is al-
tered by drug dependence but also of the molecular and physi-
ological mechanisms that drive persistent circuitry alterations in
the brain.
In the interest of identifying potential therapeutic targets for

OUD, we sought to identify brain regions that drive network-
level changes in neuronal activity. To this end, we employed a
network control theory approach. Network control is an
emerging approach in systems engineering with marked utility in
neuroscience (19–24). Control in the brain may be exerted in-
ternally (for example, via cognitive control) or externally (for
example, via stimulation). In recent years, control theory ap-
proaches have been applied to examine cognitively relevant
brain-state transitions observed in human functional magnetic
resonance imaging data (20, 25–27).
Here, we used network control theory to explore how OUD-

dependent changes in FOS expression may be mediated by the
topology of axonal connections in the brain. The approach posits
that transitions between states are constrained by the energy
required to transmute one state into another, allowing activity to
spread solely through known structural interregional links. Spe-
cifically, we computed the minimum whole-brain input energy
required to transition between brain activity patterns associated
with different opioid-dependence states. Brain activity is repre-
sented by fold change in FOS expression vectors and the brain
network is defined by interregional axonal connection strength
obtained from the Allen Mouse Brain Atlas (28). In principle,
this approach measures the ease with which the brain can tran-
sition from a drug-naïve to a drug-dependent activity state, and
from a drug-dependent to a protracted withdrawal activity state
(Fig. 5B), given the constraints imposed by the topology of ax-
onal connections between the measured regions. Our model
does not distinguish the drivers of such transitions, which in this
case are likely a combination of internal neuronal dynamics and
external inputs (i.e., opiate exposure).
For each state transition, the minimum control energy was first

calculated under full control (meaning external input can be
delivered to all regions) and then recalculated following sup-
pression of each region (external input can be delivered to all
regions except the suppressed region). This analysis determines
the increase in minimum control energy induced by the removal

Fig. 4. Gene coexpression patterns predict changes in network connectivity strength induced by opiate dependence. (A) Linear regression between gene
coexpression and the change in FOS correlation networks from an opiate-naïve state to 24 h after withdrawal from chronic exposure. (B) Distribution of edges
showing increased weight following opiate dependence, compared to edges showing decreased weight following opiate dependence. **P < 0.01.

19560 | www.pnas.org/cgi/doi/10.1073/pnas.2003601117 Brynildsen et al.
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of each brain region which, in essence, quantifies the relative
influence of each brain region in the transition from one state to
another. Relative to all other regions in the network, we iden-
tified nine brain regions that influence minimum control energy
for the transition from a naïve state to 24-h “dependent” state:
the vACC, CPu, NAc, VP, BNST, CeA, DG, PAG, and SNr
(Table 2). These same regions, with the addition of the LHb and
VTA, influence minimum control energy for the transition from
the 24-h “dependent” state to the 4-wk protracted withdrawal

state. The CPu, DG, and PAG stand out in the transition from
naïve to dependent state, while the PAG and SNr most strongly
influence minimum control energy for the transition from the
24-h to 4-wk states (Fig. 5B). In contrast, cortical and thalamic
regions do not appear to significantly impact either state tran-
sition. Together, these findings indicate that regions of the hip-
pocampus, striatum, and midbrain may be topologically positioned
to facilitate easy transitions between activity patterns associated
with different states of opioid dependence.

Table 1. Genes implicated in synaptic plasticity are associated with changes to FOS correlation
networks following opioid dependence

Pathway Ratio P value

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 0.266 1.15E-06
Neuropathic Pain Signaling In Dorsal Horn Neurons 0.257 1.38E-06
Endocannabinoid Neuronal Synapse Pathway 0.242 6.03E-07
Synaptic Long Term Potentiation 0.240 7.24E-07
Reelin Signaling in Neurons 0.233 2.24E-06
CREB Signaling in Neurons 0.203 1.23E-06
Integrin Signaling 0.197 2.69E-06
Synaptogenesis Signaling Pathway 0.192 5.62E-08
Molecular Mechanisms of Cancer 0.187 7.76E-09

Pathways most highly significantly associated with increased gene coexpression among pairs of brain regions
showing increased connectivity following opioid dependence compared to pairs of brain regions showing
decreased connectivity. Pathways are ranked in order of the proportion of overlap between significantly
associated genes and total genes within the pathway (Ratio).

Fig. 5. Region-specific effects on control energy to drive the brain from a drug-naïve to a drug-dependent state. (A) Structural connectivity matrix repre-
senting quantitative projection strength values from the Allen Mouse Brain Connectivity Atlas. (B) Increase in minimum control energy to drive the brain
between states. Brain images represent FOS expression levels in each state, where colors represent anatomical groups and opacity represents the expression
level (more opaque indicates higher expression). Bar graphs depict the mean increase in minimum control energy following suppression of each region in the
transition from the naïve to the 24-h state and from the 24-h to the 4-wk state. Error bars represent SEM.
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Discussion
Here we sought to determine the impact of opiate dependence
on FOS correlation network connectivity, to identify gene
coexpression patterns that predict opiate-induced changes in
FOS correlation networks, and to determine the relative con-
tributions of key brain regions to the minimum control energy
required to drive the brain from one functional state of depen-
dence to another. To this end, we describe network analyses of
interregional FOS expression in 19 brain regions in three states:
opiate-naïve, 24 h after chronic opiate exposure, and 4 wk after
chronic opiate exposure. Morphine is known to induce FOS
expression throughout the brain; however, our data demonstrate
that the FOS response varies in a state-dependent manner.
Pairwise interregional correlations in FOS expression were used
to generate weighted networks, which reflect a significant re-
duction in mean positive correlation strength following chronic
morphine exposure, suggesting that the strength of FOS corre-
lation networks between brain regions is state-dependent. Fi-
nally, we show that axonal connectivity between regions of the
striatum, midbrain, and hippocampus is critical for low-energy
state transitions between functional states of opioid dependence.
These data support the notion that repeated exposure to ad-
dictive drugs induces reorganization of neural circuitry that may
underlie behaviors characteristic of addiction.
To capture the relationship between basal transcriptional

coupling patterns and opiate-induced changes in FOS correla-
tion networks, we examined gene coexpression patterns between
all brain regions included in our study. Pathway analysis revealed
that genes implicated in synaptic long-term potentiation, syn-
aptogenesis, and reelin signaling were among the most signifi-
cantly associated with increased FOS correlation networks
following chronic opiate exposure (Table 1). Many drugs of
abuse, including opioids, induce synaptic plasticity, suggesting
that this type of neuroadaptation may be a common mechanism

underlying the development of substance use disorders (29–31).
Moreover, polymorphisms in genes associated with synaptic
plasticity have been associated with vulnerability to drug addic-
tion (32, 33). Our data indicate that coordinated expression of
genes implicated in synaptic plasticity may predispose pairs of
brain regions to increased FOS correlation networks induced by
opiate dependence.
While graph theory metrics offer valuable approaches for

characterizing connectivity properties, network control theory
posits a mechanism for how interregional interactions give rise to
state-dependent neural activity (19). Network control theory
explains how a network may be driven to a particular activity
state by modulating external inputs (19, 20). Here, we calculated
the minimum input energy required to transition between brain
activity patterns associated with drug-naïve and drug-dependent
states. In the context of our work, opiate exposure is a major
known external input, and we identify brain regions whose
structural connectivity strongly influence the magnitude of input
required to drive the brain into opiate-dependent activity states.
With respect to drug addiction, the brain and associated cellular

and molecular mechanisms may adapt to chronic drug exposure
differently depending on the individual. Indeed, epidemiological
and clinical research has shown that most individuals who use
drugs do not develop dependence. While environmental stressors
and genetic factors can contribute to an individual’s propensity to
addiction, addiction vulnerability may also depend on the ease of
transition from a drug-naïve to a drug-dependent brain state. In
order to assess the relative influence of each brain region on the
minimum energy associated with each transition, we calculated
the change in minimum control energy following suppression of
each brain region in the network (25). This simulated suppression
of activity may be conceptualized as inhibitory neuromodulation,
such as that induced by optogenetic inhibition (34), or non-
invasively by transcranial magnetic stimulation (20, 35, 36). Clin-
ically, such inhibitory neuromodulation could arise from aberrant
brain pathology that involves region damage or loss.
In the naïve state, morphine increased FOS expression in eight

regions of interest: the dACC, vACC, Cla, CPu, NAc, BNST,
BLA, and VTA. These regions represent components of the
mesocortical and mesolimbic dopamine systems which are im-
plicated in drug incentive salience and acute reinforcing effects,
respectively (37). In particular, dopaminergic neurons that
project from the VTA to the NAc and cortical regions play an
important role in acute, rewarding effects of morphine and other
drugs of abuse (38–40). Several of these regions (the vACC, CPu,
NAc, and BNST) were among those found to significantly in-
fluence minimum control energy for the transition from the
naïve state to the 24-h “dependent” state. Of interest, regions
that showed significant differences in FOS expression between
the naïve and 24-h states (the dACC and BLA) were not among
those found to significantly influence control energy for the state
transition.
The dorsal striatum (CPu), DG, and PAG regions were found

to most strongly influence the minimum control energy required
to transition from an opiate-naïve to an opiate-dependent state
(naïve to 24 h). The observed state transitions occur as a result of
external inputs that include opiate exposure, and thus, in theory,
more of that input would be required if a particularly influential
region was suppressed. This suggests that inhibiting a region that
strongly influences minimum control energy would prevent opi-
ate exposure from leading to the dependent activity state.
Among the regions included in our analysis, the CPu also had

the highest weighted degree in the 24-h state. This finding is
consistent with previous work demonstrating that weighted de-
gree is highly correlated with average controllability; specifically,
suppression of regions with stronger connectivity increases
minimum control energy more than suppression of regions with
weaker connections (20). The CPu or dorsal striatum, in addition

Table 2. Relative influence of individual brain regions on
minimum control energy for opiate-induced state transitions

P value

Region Naïve to 24 h 24 h to 4 wk

dACC 1 0.9817
vACC 1.29E-09 1.51E-15
AId 1 0.9902
AIv 0.9191 0.9817
Cla 1 1
CPu 2.31E-42 6.99E-32
NAc 1.45E-18 2.02E-15
VP 3.06E-25 2.02E-15
BNST 1.82E-28 1.46E-22
BLA 1 0.9902
CeA 1.32E-28 6.99E-32
DG 2.31E-42 6.99E-32
MHb 1 1
LHb 0.9999 2.02E-15
PVT 1 1
PAG 1.75E-35 2.47E-46
SNc 1 1
SNr 1.82E-28 7.79E-39
VTA 1 2.02E-15

P values associated with the relative influence of each brain region on the
minimum control energy for the transition from the naïve to 24-h state and
from the 24-h to 4-wk state, as inferred from the increase in minimum con-
trol energy induced by removal of each region from the control set. A single
P value for each region was obtained by using Fisher’s method to combine P
values from one-sided Welch’s t tests between each region and all other
regions in the network.
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to having a role in motor function, is involved in a number of
important functions including cognition, decision making, moti-
vation, and reward perception (41–43). The location of the CPu
in the structural network suggests that it also has an important
role in the transition of the brain from a naïve state to an opioid-
dependent state and, by extension, the behaviors associated with
brain activity patterns in those states as well.
The DG region of the hippocampus is critical for the acqui-

sition of new memories and as such plays a critical role in the
storage of information relevant to drug cues and environmental
stimuli associated with drug-taking behavior. Many addictive
drugs, particularly after chronic administration, have been shown
to promote synaptic plasticity in this region (44, 45). Further, our
gene coexpression analysis identified Synaptic Long Term Po-
tentiation and Synaptogenesis Signaling as two of the top path-
ways associated with stronger transcriptional coupling between
regions with increased connectivity following opioid dependence.
Thus, it is not surprising that the DG was identified as a prom-
inent brain region influencing the transitions in brain state fol-
lowing opiate exposure.
The PAG is primarily associated with analgesia and tolerance

to opioids. Opioid-sensitive neurons in the PAG have been
shown to be hyperexcited during opioid withdrawal (46) and the
PAG receives input from both cortical and midbrain regions.
Thus, the PAG is well-positioned for coordinating functional
transitions between brain states associated with dependence and
withdrawal. While these three brain regions were not the only
ones identified that influence control energy for state transitions
following opioid exposure and withdrawal, they are functionally
plausible as control regions to help mediate transitions in brain
state following opiate exposure.

Methodological Considerations. We note several methodological
considerations pertinent to this work. First, the brain regions
included in this analysis were chosen based on their known in-
volvement in opiate reward, dependence, and withdrawal and
were intended to be representative. To more completely char-
acterize whole-brain connectivity under various drug states, fu-
ture studies could include additional brain regions to promote a
better understanding of how opioid dependence may alter as-
sociations between brain regions that are directly implicated in
drug dependence and those that are not. Second, the network
control approach that we used here assumes that activity flows
along structural paths alone and follows linear dynamics (47). An
extension to nonlinear dynamics constitutes a natural direction
for future work.

Conclusion
Here, we report findings from a network analysis of FOS ex-
pression in 19 brain regions following acute morphine exposure
in animals that were drug-naïve, drug-dependent, or had un-
dergone 4 wk of withdrawal from chronic morphine exposure.
We have combined the descriptive power of graph theory with
the explanatory power of network control theory to identify
opiate-induced alterations to FOS correlation networks. This
innovative approach allows us to understand not only what
changes occur but how they occur in the context of opioid de-
pendence. Approaches like this can eventually provide a theo-
retical foundation upon which to understand the effects of
interventions on the brain at a systems level.

Methods
Animals. Eight-week-old male C57BL/6 mice (n = 34 mice total; eight or nine
per treatment group) obtained from Taconic Biosciences were used in the
experiments. Mice were maintained on a standard light cycle (lights on
between 0600 and 1800 h), with ad libitum access to food and water. All
experimental procedures were approved by the University of Pennsylvania’s
Animal Care and Use Committee.

Drug Exposure. Morphine sulfate was obtained from the NIDA Drug Supply
and dissolved in 0.9% saline. Dependence was induced by repeated, sub-
cutaneous (s.c.) injections of escalating doses of morphine (Fig. 1 and SI
Appendix, Fig. S1). Prior to tissue collection, an acute dose of 10 mg/kg s.c.
morphine was given to induce FOS expression in each group of mice.

FOS Immunohistochemistry. Mice were deeply anesthetized with sodium
pentobarbital (50 mg/kg intraperitoneally) 90min after receiving an injection
of 10 mg/kg morphine (s.c.) and were perfused with 20 to 30 mL ice-cold
0.01M phosphate-buffered saline (PBS), followed by 40 to 50 mL ice-cold 4%
paraformaldehyde (PFA). Brains were postfixed overnight in 4% PFA and
cryoprotected in 30% sucrose at 4 °C. Brains were then frozen at −20 °C and
30 μm sections were cut on a cryostat.

After slide mounting, sections were washed four times for 10 min in 0.01M
PBS, blocked for 1 h in 0.01M PBS containing 5%normal goat serum and 0.3%
Triton X-100, and incubated overnight at room temperature in rabbit anti-
cFOS primary antibody (1:300 dilution, 2250S; Cell Signaling). Sections were
then washed four times for 10 min in 0.01M PBS, incubated for 1 h in goat
anti-rabbit Alexa Fluor 488 secondary antibody (1:1,000 dilution), and again
washed four times for 10 min in 0.01M PBS. Prior to imaging, slides were
coverslipped with DAPI Fluoromount.

Image Acquisition and Quantification. The following regions were imaged and
included in the analysis: dACC and vACC, AId and AIv, Cla, CPu, NAc, VP, BNST,
BLA, CeA, DG, MHb and LHb, PVT, PAG, SNc and SNr, and VTA. Images were
acquired as 1-μm z-stacks at 20× magnification on a Keyence BZ-X800
fluorescence microscope and stitched to capture entire brain regions within
the coronal plane. The maximum projection images were used to quantify
FOS expression. Regions of interest were defined according to the Allen
Mouse Brain Atlas (28), and FOS-expressing cells within each region were
quantified using Fiji software (48). FOS-positive cells per square millimeter
were counted and summed across both hemispheres by two experimenters
blinded to treatment condition and averaged across three sections per brain
region. In order to account for FOS expression induced by handling and
injection stress, quantifications of FOS expression for each mouse were
normalized to the mean FOS expression of saline-injected controls to com-
pute fold change (Fig. 2). Two-way ANOVA of fold change in FOS expression
was performed using GraphPad Prism software, and P values were
Bonferroni-corrected for multiple comparisons.

Network Construction. Undirected, weighted networks were constructed in
which brain regions of interest served as nodes and positive pairwise Pear-
son’s correlations in fold change in FOS expression across animals served as
edges between nodes (49). A one-way ANOVA was used to compare Fisher
z-transformed correlation coefficients between states. Correlation matrices
were generated using the package corrplot (50), represented as graphs, and
both visualized and analyzed using the package igraph (51) within R (52).
The two-dimensional projections of networks for visualization purposes
were constructed using the Fruchterman–Reingold algorithm (53).

In the context of our work, regions of the network are deemed to be
“connected” when there exist statistical dependencies in interregional
patterns of neuronal activity across animals. Thus, differences in interre-
gional correlation values between states reflect increases or decreases in the
similarity of interregional neuronal activity patterns induced by chronic
opiate exposure. Regions that display positive interregional correlations in
neuronal activity are understood to be functionally associated, and changes
in correlation values may reflect altered communication between brain
regions.

Local Characteristics of Network Connectivity. To characterize FOS correlation
network connectivity, we computed the distributions of weighted degree
and weighted betweenness centrality for each network. Weighted degree
gives the number of edges connected to a node, weighted according to
strength; in this case, the weight reflected the strength of the positive
pairwise correlation. The weighted degree is defined as

si = ∑
N

j=1
aijwij ,

where aij represents the connection between nodes i and j,wij represents the
weight of the connection between nodes i and j, and N is the set of all nodes
in the network (16).
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The weighted betweenness centrality gives the number of shortest paths
in a weighted network on which a given node lies. The weighted be-
tweenness of each node i is defined as

bw
i =   ∑

h,   j∈N,h≠j,h≠i, j≠i

σwhj(i)
σwhj

,

where σwhj is the number of weighted shortest paths between node h and
node j and σwhj(i) is the number of weighted shortest paths between node h

and node j that pass through node i (54). Weighted degree and weighted
betweenness centrality were computed using the package igraph within R,
and two-sample Kolmogorov–Smirnov tests were used to compare the dis-
tributions of degree and betweenness centrality between each pair of
states. The resultant P values were Bonferroni-corrected for multiple
comparisons.

Gene Expression Analysis. Regional gene expression data were obtained from
theAllenMouse Brain Atlasmicroarray data available at download.alleninstitute.
org/informatics-archive/october-2014/mouse_expression/mouse_expression_
data_sets.csv. For each available experiment, we first normalized the expression
intensity of each gene across regions using a sigmoid function (17) in order to
account for arbitrary differences in baseline signal across experiments. This
process yields an N × 1 vector of gene expression on a scale of 0 to 1 for each
experiment for each gene, where N is the number of brain regions (here, the
19 brain regions assayed for FOS expression). Next, for each gene, we aver-
aged expression vectors across all available probes and experiments, yielding
an N × 19,616 matrix of gene expression values for each region.

We assessed gene coexpression patterns by calculating pairwise interre-
gional Pearson’s correlations in expression across 19,616 genes. We adjusted
for spatial correlations in the data by fitting an exponential decay curve
rg(dij) = 1.2201e  (−0.6008  dij) − 0.1491 (SI Appendix, Fig. S4). To understand
the relationship between gene coexpression and opiate-induced change in
connectivity strength, we performed a linear regression of mean gene
coexpression with change in weighted degree from the opiate-naïve to
opiate-dependent state for each brain region. We then used a two-sided
Welch’s t test to compare gene coexpression between all pairs of brain re-
gions that show increased connectivity strength and all pairs of brain regions
that show decreased connectivity strength following opiate dependence. In
order to identify the specific genes that contribute to higher gene coex-
pression between brain region pairs that show increased FOS correlation
networks after opioid dependence, we computed a GCC score for each gene,
which is defined as

GCC a( )
ij = ~g(a)

i
~g(a)
j − rg dij( ),

where ~g(a)
i

~g(a)
j is the product of z-scored, normalized gene expression values

for gene a in brain regions i and j (17).
One-sided Welch’s t tests were used to identify genes that significantly

contribute to the observed higher gene coexpression levels among increased
functional associations compared to decreased functional associations. To
relate significantly associated genes to functional pathways, we then per-
formed gene function analysis using Ingenuity Pathway Analysis (Version 01-
14; QIAGEN). Ingenuity Pathway Analysis uses a Fisher’s Exact Test to identify
canonical pathways that are significantly associated with the genes of in-
terest relative to the entire Ingenuity Pathway Analysis knowledge base.

Network Control. To understand how the brain is driven from an opiate-naïve
to an opiate-dependent state, taking into consideration the structural con-
nectivity of its component regions, we used a network control theory ap-
proach. Network control theory explains how to manipulate the state of a
system of interconnected units (12, 55, 56). Given an understanding of the
connections between elements in a system and the dynamics or activity of
those elements, we can use network control theory to make predictions
about the behavior of the system (19).

The simplified mathematical model that we used to describe the brain’s
dynamics when it is driven along a particular trajectory by injecting control
signal or input is defined as

_x = Ax(t) + Bκuκ(t),
where x(t) is an N × 1 vector representing the state of the brain; in this case,
each state is the fold change in FOS expression across N = 19 brain regions.
The matrix A is an N × N adjacency matrix representing the relationships
between brain regions; in the context of this work, it represents the density
of axonal projections between each pair of regions (28). When all brain
regions are controlled, Bκ is an N × N identity matrix with ones along the
diagonal and zeros elsewhere. The variable uκ(t) is an N × 1 vector reflecting
the amount of control input into each of the N control regions at each time
point t.

We computed the minimum control energy to transition between opiate-
naïve and opiate-dependent brain states and used these values to determine
the relative influence of each brain region on the state transition. The
minimum control energy is the minimum energy of a control input to drive
the brain from an initial state x(0) = x0 to a target state x(T) = xT over time
horizon T. To compute minimum control energy, the activity level (FOS ex-
pression) for each brain region in each state is specified, as is the control set
Bκ. In order to compute the change in minimum control energy induced by
removing brain region i from the control set, the i-th diagonal element in Bκ

is replaced with a zero, and control energy in the full control condition is
subtracted from the resulting control energy. In our study, minimum control
energy was computed with a time horizon of 1 (27). Of note, we found that
varying the time horizon did not alter the distribution of the results (SI
Appendix, Fig. S5).

Minimum control energy was computed using MATLAB software. Struc-
tural connectivity data for regions corresponding to those included in the FOS
correlation networks analysis were obtained from the Allen Mouse Brain
Connectivity Atlas (28). Structural connectivity data were obtained from
adult male C57BL/6 mice and represent the density of axonal projections
mapped from each tracer-injected source node to its ipsilateral target node.
Functional data under each state were represented by fold change in FOS
expression for each brain region.

In order to statistically compare the relative influence of each brain region
in the network on the minimum control energy necessary for each state
transition, we computed the minimum control energy between every pos-
sible pair of FOS expression vectors in each state (e.g., given n = 8 mice in the
naïve group and n = 9 mice in the 24-h group, 72 vector pairs are possible)
after suppression of each brain region, as described above. One-sided
Welch’s t tests were used to identify brain regions that significantly influ-
ence the minimum control energy for each state transition relative to other
brain regions. All P values were Bonferroni-corrected for multiple compari-
sons and were combined using Fisher’s method to obtain a single P value for
each region.

Data Availability. FOS expression data and all code used for the analyses are
available at https://github.com/jkbrynildsen/opiateFOSconnectivity. Struc-
tural connectivity data and interregional distance data are available from
the Allen Institute (28). Regional gene expression microarray data from the
Allen Mouse Brain Atlas are available at download.alleninstitute.org/
informatics-archive/october-2014/mouse_expression/mouse_expression_data_sets.csv.
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